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A New Method of Evaluation of Howland Integrals 

By Chih-Bing Ling and Jung Li 

Abstract. In this paper, two Howland integrals are evaluated to 25D when the index is 
an odd integer. Those Howland integrals when the index is an even integer have been 
evaluated to 18D by Nelson. A new method of evaluation is used. 

The four Howland integrals were first evaluated to 5D by Howland himself, 
partly with Stevenson, in the papers dealing with a perforated strip [1], [2]. Ling and 
Nelson in an earlier paper [3] evaluated these integrals to 6D by using a different 
method through some intermediate integrals. Later, Ling [4] reproduced the 6D 
values and also added values of a group of related integrals. Recently, Nelson [5], 
by using the same method, evaluated the integrals to 9D. In the process of computing 
some related integrals arising from axisymmetrical problems, Nelson, in the same 
paper, further evaluated the following two Howland integrals to 18D, when k is an 
even integer: 

Ik 
co 

r Wk dw (k? 1), 
IJ 2(k!) f inh w d w' (k ? 3). 

The aim of the present paper is to evaluate these two integrals to 25D, when k-is 
an odd integer, by using a direct method without recourse to the intermediate 
integrals. We begin by expanding the integrands into series as follows: 
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where pn(w) is the Gegenbauer polynomial of degree n and order unity [6]. The 
expressions are found to be different depending on n being an even or an odd integer. 
They are, for n> 0, 
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With the aid of the integral 
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the following series are obtained for any integral value of k under the restrictions 
as indicated, 

Ik _ 1 zc) + q3(k) = q4(k) + q5(k) (k ? 1) 
4t t2 3 4k+4 5 (k 3) 

where 

q2(k) = 2(k + 1), 

(6) q3(k) = 4k2 + 12k - 1, 

q4(k) = 8(k + 1)(k2 + 5k - 2), 

q5(k) 3 16k4 + 160k3 + 260k2- 100k + 409. 

In general, qn(k) is a polynomial of k of degree n - 1 with integral coefficients. The 
general expressions are 

q2,+l(k) = > (_ 1) +n+ f7 m ) i;; + m) 22m(2n + 1)2n2m 

(7) 
n= n-M 

(k ( l)n+m(2m + k + 1) (n + m + 1)! 22m+(2 + 2)2n2m. 

m-0 k ~~~~(n - ) 

The preceding series for the integrals are rapidly convergent when k is a large 
integer but slowly convergent when k is a small integer. In particular, the series for 
I, and I2 are believed to be only conditionally convergent. For instance, an accuracy 
of 25D can be attained with only the first five terms for k 2 44, ten terms for k ?: 33 
and as many as fifty terms for k ? 20. Hence, it is necessary to use some other method 
to evaluate the early integrzals. By a combined use of Cauchy's integral theorem and 
Cauchy's theorem of residues, the integrals I2k-i and I2*,- are developed into series 
as follows: For k > 1, 
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and for k > 2, 
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where a is a positive constant, Skn is the Kronecker delta, and Z, and z* are the mth 
complex zeros of sinh z il z, respectively, in the first quadrant of the z-plane. The 
results give two different expressions for each integral. The derivation will be 
described later. Each integral can then be computed from one expression and checked 
by the other. 

It is seen that each expression consists of two series. The first one is a real series 
and the second the real part of a complex series. It is also seen that the constant a 
occurs only on the right-hand side of each expression. This constant can be fixed to 
suit our convenience. The first series converges rapidly when a is large and the second 
when a is small. In fact, the first series of the first expression of each integral represents 
the value given by the trapezoidal rule, and the first series of the second expression 
represents the value given by the rectangular rule. In both cases, a is the width of the 
strip. Therefore, the second series of each expression may be regarded merely as a 
correction, analogous to the second series in Gregory's formula [7]. By a proper 
choice of a, the value of the second series can generally be made small in comparison 
with that of the first series. 

In the computation, the value of a is taken as unity. Unlike the series in (5), the 
convergence of the first series becomes slower as k increases. To attain an accuracy 
of 25D with this value of a, 65 terms of the first series are needed for k = 1, 130 
terms for k = 15 and 200 terms for k = 35. The corresponding numbers of terms 
needed to attain an accuracy of 18D are 47, 110 and 175, respectively. The number 
of terms needed in each instance decreases to one half if the value of a is doubled. 
In computing the second series, the 1lD values of Zm and z* computed before by 
Ling [8] are available. Their accuracy can be improved readily, whenever needed, 
by using the Newton-Raphson method. The convergence of the second series is so 
rapid that when a = 1, at most two terms are needed for the present computation. 

An alternative method for computing these values is to attempt to evaluate the 
remainder term in (5). This remainder term has an integral representation of a similar 
nature as I, or I* itself, but the integrand is more complicated. On the other hand, 
when the Gauss-Laguerre quadrature rule was used in the evaluation, it was found 
that, for small values of k, adequate precision could not be obtained without an 
effort far exceeding that required when using (8) and (9). 

The computation was carried out on an IBM 1620 computer. The following 
relations were used as a further check: 

co 

Z (1 - I2k-1) Il 4A 

(10) k-1 

E (l*k - 1) =4 
k=2 

Some typical values of Ik and I* rounded to 25D are shown in the accompanying 
table. The complete results for odd integral values of k up to 91 appear in the 
tables on pp. 334 and 335 of this paper. 

Derivation of Expressions (8) and (9). Consider the contour integral 

(11) 17i ? (z- h z2+ z (k _ 1), 
2iri (z - t)(sinh z + z) Cos (irz/a) 
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Table. Howland integrals Ik and I* when k is an odd integer k k 

k | Ik k 

1 0.76857 45381 11553 68096 76880 X 

3 0.82771 02958 85164 81343 56543 2.03871 06665 65932 70071 50016 

5 0.92547 59977 84897 73778 40994 1.15686 43660 75341 56854 09629 

7 0.97269 89930 38011 36576 56831 1.03925 13121 81494 86407 63193 

9 0.99094 91791 22157 96577 36401 1.01087 01465 33325 36251 87849 

11 0.99718 85753 87716 81086 85869 1.00308 47737 70445 49356 36804 

13 0.99916 38232.58856 72120 94672 1.00087 61801 93056 13024 90264 

15 0.99975 85587 66695 28941 74027 1.00024 71389 53388 81695 24967 

17 0.99993 17185 56121 05194 10886 1.00006 90733 57675 51266 51905 

19 0.99998 09793 21140 41769 14442 1.00001 91284 43795 33176 43980 

21 0.99999 47619 05105 76299 10821 1.00000 52524 98197 16132 17372 

23 0.99999 85704 29417 28762 07253 1.00000 14314 66414 40027 00505 

25 0.99999 96126 92405 13473 89937 1.00000 03875 53890 75565 46225 

27 0.99999 98957 07648 54992 23669 1.00000 01043 23990 59043 58713 

29 0.99999 99720 62331 92616 96717 1.00000 00279 41692 90959 92369 

31 0.99999 99925 49672 97929 12797 1.00000 00074 50834 66324 65526 

33 0.99999 99980 20971 28404 08009 1.00000 00019 79092 26267 56463 

35 0.99999 99994 76135 00127 56009 1.00000 00005 23872 90041 29141 

37 0.99999 99998 61757 29356 59978 1.00000 00001 38243 68310 21172 

39 0.99999 99999 63620 27195 72193 1.00000 00000 36379 84811 33639 

41 0.99999 99999 90450 31297 57245 1.00000 00000 09549 70171 39873 

43 0.99999 99999 97498 89046 47118 1.00000 00000 02501 11132 45368 

45 0.99999 99999 99346 30079 16274 1.00000 00000 00653 69942 54313 

47 0.99999 99999 99829 46975 65349 1.00000 00000 00170 53026 97001 

49 0.99999 99999 99955 59108 05951 1.00000 00000 00044 40892 25651 



A NEW METHOD OF EVALUATION OF HOWLAND INTEGRALS 335 

Table. Howland integrals Ik and 1'k when k is an odd integer 
k k 

(cont'd) 

kIk Ikk 

51 0.99999 99999 99988 45368 07336 1.00000 00000 00011 54631 96458 

53 0.99999 99999 99997 00239 78562 1.00000 00000 00002 99760 21892 

55 0.99999 99999 99999 22284 38855 1.00000 00000 00000 77715 61199 

57 0.99999 99999 99999 79877 20771 1.00000 00000 00000 20122 79235 

59 0.99999 99999 99999 94795 82958 1.00000 00000 00000 05204 17043 

61 0.99999 99999 99999 98655 58931 1.00000 00000 00000 01344 41069 

63 0.99999 99999 99999 99653 05530 1.00000 00000 00000 00346 94470 

65 0.99999 99999 99999 99910 55332 1.00000 00000 00000 00089 44668 

67 0.99999 99999 99999 99976 96070 1.00000 00000 00000 00023 03930 

69 0.99999 99999 99999 99994 07077 1.00000 00000 00000 00005 92923 

71 0.99999 99999 99999 99998 47534 1.00000 00000 00000 00001 52466 

73 0.99999 99999 99999 99999 60825 1.00000 00000 00000 00000 39175 

75 0.99999 99999 99999 99999 89941 1.00000 00000 00000 00000 10059 

77 0.99999 99999 99999 99999 97419 1.00000 00000 00000 00000 02581 

79 0.99999 99999 99999 99999 99338 1.00000 00000 00000 00000 00662 

81 0.99999 99999 99999 99999 99830 1.00000 00000 00000 00000 00170 

83 0.99999 99999 99999 99999 99957 1.00000 00000 00000 00000 00043 

85 0.99999 99999 99999 99999 99989 1.00000 00000 00000 00000 00011 

87 0.99999 99999 99999 99999 99997 1.00000 00000 00000 00000 00003 

89 0.99999 99999 99999 99999 99999 1.00000 00000 00000 00000 00001 

91 1.00000 00000 00000 00000 00000 1.00000 00000 00000 00000 00000 
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TABLE 

k Ik I-* 

1 0.76857 45381 11553 68096 76880 o 
3 0.82771 02958 85164 81343 56543 2.03871 06665 65932 70071 50016 
5 0.92547 59977 84897 73778 40994 1.15686 43660 75341 56854 09629 

15 0.99975 85587 66695 28941 74027 1.00024 71389 53388 81695 24967 
25 0.99999 96126 92405 13473 89937 1.00000 03875 53890 75565 46225 
35 0.99999 99994 76135 00127 56009 1.00000 00005 23872 90041 29141 
55 0.99999 99999 99999 22284 38855 1.00000 00000 00000 77715 61199 
85 0.99999 99999 99999 99999 99989 1.00000 00000 00000 00000 00011 

where the contour is taken round the circle lzl = R through a sequence of values 
such that thie circle never passes through any pole of the integrand, t being any point 
on the x axis inside the circle and a a positive constant. The integral tends to zero as R 
tends to infinity. The poles of the integrand are 

zt, s ZZZm , Z-- Zm z = i (n + ')a 

where m = 1, 2, 3, * , n 0, 1, 2, ... , and a bar denotes the complex conjugate, 
Zm being defined before. Note that the complex zeros of sinh z + z in the entire 
z-plane are symmetrically located in each quadrant with respect to both the x and y 
axes. Furthermore, the origin z = 0 is also a zero. Both poles are of order unity. 

It follows from Cauchy's theorems that the sum of residues at all the poles is 
zero. Consequently, we find 

2k-1 co_a_2_ _ 2(-l '(n 11 
t a z ?1r( a ~a2 k _ _ _ _ _ 

(12) (sinh t + t) cos (rt/a) ir n=O sinh (n + D)a + (n + )a (nax + Ia)2 _ t2 

co 
2z2 

k 

- Re 2 2 
m cosh2 (zm/2) cos (7rzm/a) z4 - t 

Multiplying by cos (rt/a), integrating with respect to t from zero to infinity, and 
making use of the following integrals 

co cos (7rt/a) dt _ n1) 

(13) JO (na + 'a)2- (2n + 1)a 
co 

cos (rt/a) dt 7ri 
2 

= 
-- exp (rizm/a), 

we find the second expression in (8). 
Again, consider the contour integral 

(14) I72/-dz(k ? 1). 
(2ri (z - t)(sinh z + z) sin (rz/a)' 

The poles of the integrand are 

z = t, Z = EZm, Z = 4rm, z = 4 na, 
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where m = 1, 2, 3, * * * and n -1, 2, 3, * - * . In particular, when k = 1, an additional 
pole is at the origin z = 0. By making use of the following 2ntegrals 

r0 t sin (?rt/oa) dt _ ( n 

(15) J (na)2-_ 
t2 2 

co t sin (7rt/a) dt It 
Z2 2 --2 exp (orTZm/a), 

we find similarly the first expression in (8). 
By replacing sinh z + z with sinh z - z in the foregoing two contour integrals, 

we likewise find the two expressions in (9) for k ? 2. 
It should be mentioned that two expressions for each I2, and IR can be derived 

in a similar manner. However, the resulting expressions appear to be less simple 
since they also involve sine and cosine integrals. It should also be mentioned that 
the foregoing method of evaluation can be generalized. 
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